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The Power of Histograms 

Cristian Vava, PhD 
 

The main goal of this white paper is to show how histograms 

could be used to draw important information about a set of data 

going sometimes beyond what standard statistical formulas 

could do. The paper will show common examples of (pseudo) 

random variables with non-normal distributions and the 

estimation errors created when deriving their statistical 

properties based on the assumption of normality, especially for 

low probability events.  

Let’s start the analysis with a set of pseudo-random numbers 

having an almost normal statistical distribution. The numbers 

used below have been generated in Excel using the internal 

random number generator with uniform distribution and a Box-

Muller transformation. Figure 1 below shows the histogram of 

both the empirical distribution (ED) derived from the raw data 

(GAUSS) and its equivalent normal distribution (EN) built 

from the average and standard deviation parameters based on 

the maximum likelihood estimation model (unbiased estimator 

of the population variance with the Bessel correction): 
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Here xi represent the samples, N the total number of samples, 

and 

 the average of samples determined as: 
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Figure 1 below shows that in case of a normal distribution EN 

(labeled GAUSS in this case) is a good approximation for ED.  

Figure 1 

 

However this is not necessary the case if the empirical 

distribution is far from normality and Figure 2 below will show 

such an example. In this last case the raw data represents the 

daily change of Microsoft (MSFT) stock price over an entire 

decade (August 2000 to August 2010). The equivalent normal 

distribution as shown in Figure 2 is obviously inappropriate for 

many practical purposes.  However we could build another 

normal distribution (MSFT Best Fit) that represents a better fit 

although not based on the maximum likelihood estimator. Even 

better we also could build a so called Optimal Approximation 

estimator which represents the lowest degree exponential 

distribution matching the original empirical distribution. 

Let’s now take a more detailed look into the differences among 

the three representations used in Figure 2. Table 1 below shows 

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

$(4.0) $(3.0) $(2.0) $(1.0) $- $1.0 $2.0 $3.0 $4.0 

P
ro
b
a
b
il
it
y

Daily Return Rate

PDF of GAUSS and its Equivalent Nomal Distribution

GAUSS Gauss Equivalent Normal



© 2010 Innovatorium  2

the probability to get a daily change rate of 0%, 1%, 2%, 3%, 

and 10% as predicted for each representation.  

Figure 2 

 

The more complex representations offer a better estimation 

justifying in most cases the supplementary computational cost.  

Table 1 

Daily Return 
 

Distribution 

0% 1% 2% 3% 10% 

Empirical 15.4% 7.3% 3.5% 1.8% 0.04% 

Equivalent Normal 9.3% 8.4% 6.1% 3.6% 2x10-4  % 

Best Fit Normal 14.2% 9.7% 3.9% 0.9% 2x10-11 % 

Optimal Approximation 15.2% 7.7% 3.4% 1.5% 0.04% 

However the real value of a sophisticated histogram analysis 

could be seen in the case of very low probability events. As 

Table 1 above indicates for a 10% daily change the empirical 

probability is 0.04% but the equivalent normal distribution 

predicts it at 2x10
-4
 %. At such a low probability it shouldn’t 

come as a surprise that people start seeing black swans. It is 

only a common case of a wrongly fitted model and the Optimal 

Approximation shows that a much more suitable estimator is 

feasible.  

Since we could build such a closely fit estimator a natural next 

step is to determine the range of possible values. The range 

limits have an exponential form but obviously can’t represent 

distributions because the area under their curves is different 

than 100%.  

Figure 3 

 

Table 2 shows some details about how accurately the Optimal 

Approximation and the Optimal Range describe the empirical 

0%

2%

4%

6%

8%

10%

12%

14%

16%

-10% -8% -6% -4% -2% 0% 2% 4% 6% 8% 10%

P
ro
b
a
b
il
it
y

Daily Change

PDF of MSFT, Equivalent Nomal, Best Fit, and Optimal 
Approximation Distributions (detail)

MSFT MSFT Equivalent Normal MSFT Best Fit MSFT Optimal

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%
10%
11%
12%
13%
14%
15%
16%

-10%-9% -8% -7% -6% -5% -4% -3% -2% -1% 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
P
ro
b
a
b
il
it
y

Daily Change

PDF of MSFT, Optimal Approximation, and 
Optimal Range (detail)

MSFT MSFT Optimal MSFT Max MSFT Min



© 2010 Innovatorium  3

distribution. In all cases the range opening was under 1.6% and 

the Optimal Approximation was accurate within 0.5%.  

Table 2 

Daily Return 
 

Distribution 

0% 1% 2% 3% 10% 

Empirical 15.4% 7.3% 3.5% 1.8% 0.04% 

Maximum 15.6% 8.1% 3.8% 2.0% 0.5 % 

Minimum 14.3% 7.1% 3.0% 0.4% 0.0 % 

Optimal Approximation 15.2% 7.7% 3.4% 1.5% 0.04% 
 

 

When deciding whether to use the assumption of normal 

distribution a good rule of thumb is to check the statistical 

moments of higher order starting with the skewness and 

kurtosis. If all higher order moments are small then the normal 

distribution could represent a good estimation. The two data 

sets from our examples had moments as described by Table 3 

below.  

Table 3 

Parameter GAUSS MSFT 
Average 0.001 0.0003 

Standard Deviation 1.4 0.002 

Skewness 0.03 0.07 

Kurtosis 0.08 7.1 

One can use such an optimal range to estimate the financial 

risk if the original data describes investments. It could be also 

used in the pharmaceutical industry, the insurance industry, and 

many other places where there is a need to know either a more 

accurate description of the distribution function or to predict 

low or very low probability events.  

 

 

Conclusions 

When applied correctly the histogram gives not only a fast 

graphical depiction of the whole data set but could also give a 

more accurate representation of the statistical parameters.  
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